STRATEGIC FRONT END SUPPORT

STRATEGIC FRONT END

APPLICATION PROGRAMMER INTERFACE

(For TCP/IP Clients)

User Guide

S:\documentation\API\SFE API User Guide.doc
May 14, 2003

Copyright 1990-2003 EDS Canada Inc.

All Rights Reserved.

Table Of Contents

3Table Of Contents

1. Introduction
6
1.1 Intended Audience
7
1.2 How to Use this Guide
7
1.3 Conventions Used in this Guide
8
1.4 Obtaining the Example Programs
10
1.5 Where to Call for Support
10
1.6 Availability of APIs
10
1.6.1 System Architecture
11
1.6.2 The Flexible Scheduling Host
12
1.6.3 The Strategic Front End
12
2. Error Handling within the API
13
2.1 Status Values
13
2.2 Status Vectors
14
2.3 Logging Errors
15
3. Debugging within the API
16
4. FA - Flex Communication API Overview
18
4.1 System Requirements
18
4.2 System Environment
19
4.2.1 Defining the SFE Host
19
4.2.2 Defining the SFE Network Services
20
4.2.3 Locating the API Runtime Error Message File
21
4.3 Concepts
22
4.3.1 Devices
22
4.3.2 Triggers
22
4.3.3 Reports
22
4.3.4 Formats
23
4.3.5 Events
23
4.3.6 Tags
23
4.3.7 The Protocol
24
4.4 Using the API
25
4.5 Interfacing to the IA API
26
4.6 Include Files
26
4.7 Building with the API
27
4.8 Debugging an Application
31
5. IA - Inter Process/Network Communications API
32
5.1 System Requirements
32
5.2 System Environment
33
5.3 Concepts
34
5.3.1 The Event Driven Model
34
5.3.2 The Base Level Model
34
5.4 Error Handling within the API
35
5.5 Using the API
35
5.6 Include Files
37
5.7 Building with the API
37
5.8 Debugging an Application
38
6. UA/LA – Utilities/Librar API
39
6.0.1 The Message Traffic Log
39
6.0.2 The Error Log
40
6.0.3 The Application Debugging Log
42
7. FA - Module and Structure Reference
43
7.1 Structure Reference
43
7.2 sfefa_ack
47
7.3 sfefa_close
51
7.4 sfefa_connectionid
53
7.5 sfefa_decode
54
7.6 sfefa_encode
56
7.7 sfefa_open
58
7.8 sfefa_rcv
62
7.9 sfefa_trigger
66
7.10 sfeua_error_write
72
7.11 sfeua_vector_expand
74
7.12 sfela_copyright
76
8. Application Porting Considerations
77
8.1 Introduction
77
8.1.1 Audience
77
8.1.2 Feedback, Questions, and Comments
77
8.2 General Issues
77
8.2.1 Integer Representation
77
8.2.2 Alignment
77
8.2.3 Network Messages
77
8.2.4 File Name Issues
78
8.2.5 ANSI vs. Non-ANSI
78
8.2.6 System Call Usage
78
8.2.7 Include File Considerations
78
8.2.8 Isolate Error Handling
78
8.3 Data Base Issues
79
8.3.1 SQL Issues
79
8.3.2 Data Definition Language Issues
79
8.4 Source Code Management
79
8.4.1 One Copy Of Source
79
8.4.2 Source Code Re-Integration and Promotion
80
8.5 The Application Environment
80
8.6 Platform Specifications
80
8.6.1 IBM RS/6000 AIX
80
8.6.2 SCO/UNIX
81
8.6.3 Interactive/UNIX
81
8.6.4 VAX/VMS
81
8.6.5 HP/UX
81
8.6.6 Motorola UNIX
81
8.6.7 DOS/Windows 3.1
81
8.6.8 Win32 (Windows 95, 98, NT 4, 2000) - Intel
82
9. FLEX Opcodes
84
9.1 FLEX Trigger Opcodes Supported
84
9.1 Returned FLEX Opcodes
86
10. Client TCP/IP Keep Alive
87
10.1 Introduction
87
10.1.1 AIX 3.2.5.1 up to 4.3.3
88
10.1.2 HP-UX-9.04
89
10.1.3 Motorolla - 68k/88k
89
10.1.4 Windows 32 bit (NT/95/98)
92

1. Introduction

Plant floor computing in the manufacturing arena has several common requirements, namely:

symbol 183 \f "Symbol" \s 8 \h
Access to product data.

symbol 183 \f "Symbol" \s 8 \h
Ability to modify product data.

symbol 183 \f "Symbol" \s 8 \h
A client/server based implementation.

symbol 183 \f "Symbol" \s 8 \h
Portability across the wide range of computing platforms currently present in this environment.

To meet these needs, the Client/Server Development account has invested in the development of an infrastructure model that meets the challenges presented by the manufacturing environment. The model is implemented in the context of an application programming interface (API) - a well-defined set of modules that provide the abstraction and encapsulation of the above requirements. This API is currently based on the Berkeley sockets interface.

The APIs offer the following functionality:

symbol 183 \f "Symbol" \s 8 \h
FA - Flex Communications API - simplifies the access to and ability to modify vehicle data

symbol 183 \f "Symbol" \s 8 \h
IA - Inter Process/Network Communications API - simplifies the development of client/server inter process communications

symbol 183 \f "Symbol" \s 8 \h
LA - Miscellaneous API - simplifies the processing of error, traffic and debug (trace) messaging of applications

symbol 183 \f "Symbol" \s 8 \h
UA - Utilities API - simplifies the file manipulation for error handling, error logging, message logging, and debugging of applications

1.1 Intended Audience

The intended audience of this document is the application programmer. It is assumed that this individual has a strong background in ‘C’ language programming and constructs. Although not required, an understanding of the UNIX, VAX, DOS or Windows operating systems is helpful.

1.2 How to Use this Guide

This document is composed of several sections, each describing one of the APIs. Each of these sections consists of:

symbol 183 \f "Symbol" \s 8 \h
A description of the functionality, system requirements and environment, general concepts, and error handling. The API user is encouraged to become familiar enough with the overview section to feel comfortable with the general components and concepts involved in the APIs.

symbol 183 \f "Symbol" \s 8 \h
A section describing how to use the API in real applications. The API user can use this section to understand the techniques used in properly implementing API functionality.

symbol 183 \f "Symbol" \s 8 \h
A section on building, linking, and debugging applications that use the API.

1.3 Conventions Used in this Guide

symbol 183 \f "Symbol" \s 8 \h
All API calls are prefixed as follows:

 <facility-code><subsystem-code>

 where

<facility-code> is a lowercase three (3) letter code

application identifier. The SFE API facility-code is ‘sfe’.

<subsystem-code> is a two (2) letter code subsystem

identifier. The API subsystem-codes are listed below:

‘fa’ - Flex Communication API

‘ia’ - Inter Process/Network Communications API

‘ua’ - Utilities API

‘la’ - Miscellaneous functions API

symbol 183 \f "Symbol" \s 8 \h All API typedefs are found in ‘sfetype.h’. Typedef naming conventions are as follows:

 <FACILITY-CODE><description>

 where

<FACILITY-CODE> is the uppercase API facility code. This

is ‘SFE’ for all APIs.

<description> is a meaningful descriptor.

symbol 183 \f "Symbol" \s 8 \h
All API constants are named as follows:

 <FACILITY-CODE>_<CONSTANT-TYPE>_<DESCRIPTION>

 where

<FACILITY-CODE> is the uppercase API facility code. This

is ‘SFE’ for all APIs.

<CONSTANT-TYPE> is the uppercase constant type value definition.

The following lists possible values:

K
- can be stored in an integer (long, short, byte) variable

KT
- can be stored in a character string variable

<DESCRIPTION> is a meaningful uppercase descriptor.

symbol 183 \f "Symbol" \s 8 \h
All API structures are named as follows:

 <facility-code><descriptor>

 where

<facility-code> is a lowercase three (3) letter code

application identifier. The SFE API facility-code is ‘sfe’.

<descriptor> is a (up to) four (4) lowercase letter

structure descriptor.

symbol 183 \f "Symbol" \s 8 \h
All API structure elements are named as follows:

 <structure-name>_<variable-type>_<descriptor>

 where

<structure-name> is a lowercase three (3) letter code

application identifier. The SFE API facility-code is ‘sfe’.

<variable-type> is the structure variable element type.

It is named as follows:

z
- typedef variable

b
- byte length variable

w
- word length variable

l
- longword length variable

a
- address/pointer variable

f
- floating point variable

t
- null-terminated character string

s
- non-null terminated character string.

All global variables have the above <variable-type> prefixed

by the letter ‘g’.

<descriptor> is a uppercase structure descriptor.

1.4 Obtaining the Example Programs

The following source code examples are available:

symbol 183 \f "Symbol" \s 8 \h
fatmain.c - Menu driven program to send triggers and receive reports.

symbol 183 \f "Symbol" \s 8 \h
iatclient.c - Menu driven program to send/receive inter process/network messages.

symbol 183 \f "Symbol" \s 8 \h
iatserver.c - Program that demonstrates server/daemon usage for sending/receiving interprocess/network messages.

These example programs (source and binaries) are available upon request.

1.5 Where to Call for Support

All questions/concerns/requests for SFE API support should be forwarded to the SFE help desk at 8-274-4278 or (905) 644-4278 or via e-mail Canade – SFE Helpdesk.

1.6 Availability of APIs

The APIs are currently available on the following vendor hardware/Operating System platforms:

· IBM RS/6000 AIX v4.3.3

· HP/UX v 9.0

· Motorola/UNIX

· Intel MS DOS (v5.0), Microsoft ‘C’ compiler (v6.0), FTP TCP/ IP ethernet software (v2.2)

· Interactive UNIX v3.2.3

· Windows NT v4.0

· Win32 (Visual Studio .NET)

1.6.1 System Architecture
The following is a diagram illustrating the components/methods involved in the processing of triggers and reports. Although an in-depth knowledge of this is not required for SFE API usage, it nevertheless provides a greater understanding of methods by which the SFE API provides this functionality:

[image: image1.wmf]Flexible Scheduling

Host

Strategic Front End

API User

1.6.2 The Flexible Scheduling Host
The Flexible Scheduling (Flex) host is the central repository for vehicle data. The Flex host permits the delivery and modification of vehicle data through a set of well-defined transactions.

1.6.3 The Strategic Front End

The SFE is the application that simplifies and implements the Flex transactions on behalf of SFE API users and other SFE clients. The SFE provides support for a number of client platforms:

· TCP/IP clients. The API user is considered a TCP/IP client.

· Manufacturing Automation Protocol (MAP) clients.

· Asynchronous clients. This includes terminal servers, terminals, printers and laser scanners as well as ACI clients.

· INTERCHANGE clients. This includes all Allen-Bradley PLC’s supported by the INTERCHANGE API libraries.

The components of the SFE that the API communicates with are listed below:

symbol 183 \f "Symbol" \s 8 \h
The SFE Input server. This is the SFE process that receives trigger requests from API users, formats and then forwards them to Flex for subsequent processing.

symbol 183 \f "Symbol" \s 8 \h
The SFE Output server. This is the SFE process that receives report data from Flex, formats and then forwards it to API users for subsequent processing.

2. Error Handling within the API

All API errors are communicated through:

symbol 183 \f "Symbol" \s 8 \h
A longword status value returned by the API call.

symbol 183 \f "Symbol" \s 8 \h
A status vector parameter loaded by the API call indicating detailed error status values. This value will be filled when the status value returns an error.

2.1 Status Values

All modules should return a longword status value describing that module's processing completion status. Each returned status is defined in a single include file “sfemsg.h”.

A typedef should be provided for status values used by application routines and should named as follows:

 <APP>status

 In the case of the SFE application this becomes sfestatus.

The shared routines should provide a method to determine if a status value is an error or a successful value.

 sfestatus = sfefa_open(...) ;

 if (!sfesuccessful)

 {

 error processing

 }

 else

 {

 successful processing

 }

In this case “sfesuccessful” is a preprocessor macro used to compare the sfestatyus variable with a pre-defined range of values to determined success or failure.

2.2 Status Vectors

Each module contains a status vector that is used to communicate multiple status values. As this status vector is loaded with status values it has the capability to provide a trace-back stack of processing errors. Providing the ability to return many (rather than a single) error value will simplify program debugging. In addition, the status values are maintained in memory. The ability to defer (to the caller) and streamline error logging provides program tracing and error resolution advantages.

A status vector contains:

symbol 183 \f "Symbol" \s 8 \h
A count of the status values contained in the status vector. This value is contained in a word-sized variable.

symbol 183 \f "Symbol" \s 8 \h
 A word reserved for future use.

symbol 183 \f "Symbol" \s 8 \h
An array of status values.

Routines are provided to load the status vector (sfela_error) and write status vectors to an error log (sfeua_log_vwrite).

2.3 Logging Errors

The APIs provide the following routine to permit customizable logging of status vector contents:

 sfeua_error_write

This routine will unload each of the status values on the input status vector, format them, and invoke the caller's specified routine to process the formatted status value. Module call specifications are provided in section ‘7.10 FA - Module and Structure Reference - sfeua_error_write’.

The output from a status vector unload may appear similar to the following:

 15-Oct-1993 11:00:00

 - 301 : Error connecting to <netport1>

 - 120 : Error calling system service <connect>

 - 100 : System error:

 - 67 : Address already in use

As can be seen from the above example, the information provided by the status vector provides valuable information that will simplify program debugging.

With the release of v02_08_00 of the API’s there is an alternative simplified mechanism for obtaining the detailed text messages for each of the status values currently on the input status vector:

sfeua_vector_expand

This routine will concatenate the text messages for each status value on the input status vector and return a null terminated string pointer to them that appears as follows:

15-Oct-1993 11:00:00

- 301 : Error connecting to <netport1>

- 120 : Error calling system service <connect>

- 100 : System error:

- 67 : Address already in use

The returned pointer must be freed by the calling routine. Module call specifications are provided in section ‘7.11 FA - Module and Structure Reference - sfeua_vector_expand’.

3. Debugging within the API

The following environment variables control the debug/tracing capabilities within all APIs:

symbol 183 \f "Symbol" \s 8 \h
SFEdebugmode - This environment variable will determine whether any debugging features are enabled or disabled. There is one recognized value for this variable:

‘enabled’ - debugging features are enabled

ANY other value, or the absence of this variable causes debugging features to default to disabled.

symbol 183 \f "Symbol" \s 8 \h
SFEdebugapp - This environment variable will determine the application for which debugging is to be enabled. The value for the SFE API's is ‘sfe’.

symbol 183 \f "Symbol" \s 8 \h
SFEdebugsystem - This environment variable will determine the application's subsystem for which debugging is to be enabled. In the case of the SFE API's, valid values are ‘fa’, ‘ia’, ‘la’ and ‘ua’.

symbol 183 \f "Symbol" \s 8 \h
SFEdebuglevel - This environment variable will determine the application's subsystem level of debugging that is to be enabled. Values must be in the range of 0 to 9.

For a debug string to be printed, the following conditions must be met:

symbol 183 \f "Symbol" \s 8 \h
The SFEdebugmode environment variable must be set to ‘enabled’.

symbol 183 \f "Symbol" \s 8 \h
The SFEdebugapp environment must match the debug application string value: i.e. ‘sfe’.

symbol 183 \f "Symbol" \s 8 \h
The SFEdebugsystem environment value must match the debug system string.

symbol 183 \f "Symbol" \s 8 \h
The value of the SFEdebuglevel environment variable must be greater than or equal to the application debug level.

The trace output will appear similar to the following:

01/22 15:36:00 sfefa>Configured device TCPOUT03

01/22 15:36:00 sfefa>Completed determining device work status

01/22 15:36:10 sfefa>sfefa_cbksleep

01/22 15:36:10 sfefa>Event(Sleep)->from , tag 0, opt 0, size 0

01/22 15:36:10 sfefa>sfefa_devservice

01/22 15:36:10 sfefa>Determining device work status

01/22 15:36:11 sfefa>Configuring device CKOUT01

01/22 15:36:11 sfefa>Configuring device FMTOUT

01/22 15:36:11 sfefa>Configuring device MAP90OUT

Note that this is sample output. Each API debug/trace output will contain trace messages unique to that API.

The environment variables used to obtain the above in UNIX were:

 SFEdebugmode=enabled

 SFEdebugapp=sfe

 SFEdebugsystem=fa

 SFEdebuglevel=9

4. FA - Flex Communication API Overview

The FA API permits programs to:

symbol 183 \f "Symbol" \s 8 \h
Access vehicle data.

symbol 183 \f "Symbol" \s 8 \h
Modify vehicle data.

symbol 183 \f "Symbol" \s 8 \h
Control vehicle data delivery.

Accessing vehicle data is accomplished through sending triggers to and receiving reports from the Assembly Support host (Flex) via Strategic Front End defined devices (see Concepts section). The SFE API is a layered product consisting of several routines that execute in the caller's process context.

4.1 System Requirements

The FA API requires several components to be running and accessible:

symbol 183 \f "Symbol" \s 10 \h
The Strategic Front End (SFE). The SFE must be defined, running and accessible over a TCP/IP network from the SFE API user node.

symbol 183 \f "Symbol" \s 10 \h
The Assembly Support Host (Flex). The Flex application must be defined, running and accessible to the SFE.

4.2 System Environment

The SFE must be defined on the API user node. This is accomplished with the following definitions.

4.2.1 Defining the SFE Host

The SFE host IP alias should be defined with the following entry added to the following files:

 130.178.34.3 galileo ekpa02 # SFE host

NOTE: The internet address and host names will be dependent on your site host configuration.

On UNIX hosts insert the SFE node information into the file ‘/etc/hosts’.

For Windows 95 and Windows 98 the file is called ‘hosts’ located in the Windows base directory; typically ‘C:\Windows\hosts’.

Windows NT/2000 the file locate in the following path:

%SystemRoot”\system32\drivers\etc\hosts

VAX and DOS platform socket network definitions methods are dependent on the

vendor TCP/IP sockets implementation.

4.2.2 Defining the SFE Network Services

The SFE server socket aliases for the Input and Output servers should be defined with the following entries added to the following files:

 sfe1fip0 9000/tcp # SFE input server

 sfe1fop0 9300/tcp # SFE output server

NOTE: the service numbers and protocol must be identical to that of the SFE with which you are communicating. It is recommended, but not necessary, that the service name also be identical to that of the SFE.

On UNIX hosts insert the SFE socket information into the file ‘/etc/services’.

For Windows 95 and Windows 98 the file is called ‘services’ located in the Windows base directory; typically ‘C:\Windows\services’.

Windows NT the file locate in the following path:

%SystemRoot”\system32\drivers\etc\services

VAX and DOS platform socket network definitions methods are dependent on the

vendor TCP/IP sockets implementation.

4.2.3 Locating the API Runtime Error Message File

In addition, the API runtime error message file containing descriptions of all API error codes must be located in the following locations:

UNIX:

/applications/sfe/data/sfemsg.fil

VAX:

SFEdata:[MSG]SFEMSG.FIL

DOS:

c:\app\sfe\data\sfemsg.fil

Windows (all):

X:/applications/sfe/data/sfemsg.fil

Notes:

1. Windows requires the runtime error message file be located on the current working drive letter (i.e. the one the program is executing on). Therefore, if the program is located on drive letter “E:” but it is run from drive letter ”D:” then the runtime error message file must be located at “d:/applications/sfe/data/sfemsg.fil”.

2. SFE clients that run as Windows services are considered to be running from the system drive (reflected in the environment variable “%SYSTEMDRIVE%”).

4.3 Concepts

4.3.1 Devices
A device is a logical entity which is able to send triggers or receive reports. They are grouped into two categories:

symbol 183 \f "Symbol" \s 10 \h
Input devices which can send triggers.

symbol 183 \f "Symbol" \s 10 \h
Output devices which can receive reports.

Note that a device can either be an input device or an output device. A single device can not be both - they are mutually exclusive. It is at the discretion of the API user to implement a full-duplex communication path within a single process.

The API requires that devices be correctly defined on both the SFE and Flex prior to trigger and/or report processing.

4.3.2 Triggers
Triggers are transactions that are initiated by the API user and either:

symbol 183 \f "Symbol" \s 10 \h
Request vehicle data.

symbol 183 \f "Symbol" \s 10 \h
Modify vehicle data.

4.3.3 Reports

Reports are transactions that either:

symbol 183 \f "Symbol" \s 10 \h
Contain vehicle option data.

symbol 183 \f "Symbol" \s 10 \h
Contain trigger acknowledgements.

Reports are initiated as a result of:

symbol 183 \f "Symbol" \s 10 \h
Successful Flex trigger reception.

symbol 183 \f "Symbol" \s 10 \h
Batched Flex output requests.

NOTE: Report size is limited to 2500 bytes on the DOS platform.

4.3.4 Formats

The format of a received report is determined by two items:

symbol 183 \f "Symbol" \s 10 \h
The Flex format (required). The layout of the transmitted report packet can be completely defined on the Flex host.

symbol 183 \f "Symbol" \s 10 \h
The SFE formatter (optional). SFE formatting functionality extends that of Flex through the introduction of bit-level variable formatting granularity.

symbol 183 \f "Symbol" \s 10 \h
By default, the SFE TCP/IP client receives all Flex reports in ASCII. The translation from EBCDIC (from Flex) to ASCII is performed by the SFE.

4.3.5 Events

API message communication is conveyed through a ‘C’ language SFE

event structure. These events are detailed in section: ‘7.1 FA - Module

and Structure Reference - Structure Reference’.

4.3.6 Tags

Tags are long integers which permit:

· An API user to uniquely identify ‘triggers’ and are typically used to impose a trigger sequencing mechanism. Trigger tags are maintained by the API user and are conveyed by the SFE into trigger data and acknowledgement packets.

· The SFE to uniquely identify a ‘report’. The report tag is used to identify to the SFE acknowledged reports. Report tags are maintained by the SFE and are not modifiable by the API user.

4.3.7 The Protocol
There is a simple protocol that must be adhered to by the FA API user. Specifically:

symbol 183 \f "Symbol" \s 10 \h
All requests to open a device (sfefa_open) will be acknowledged by the SFE. The acknowledgement can be used to determine whether the device was successfully opened. This acknowledgement from the SFE server must be received (sfefa_rcv) to confirm it is a postive acknowledgement. (See other portions of this document and the sample source program “fatmain.c” for explanations of how this is done.)

symbol 183 \f "Symbol" \s 10 \h
Every trigger sent to the SFE (sfefa_trigger) will be acknowledged by the SFE. The acknowledgement can be used to determine whether the trigger was accepted or not. This acknowledgement from the SFE server must be received (sfefa_rcv) to confirm it is a postive acknowledgement. (See other portions of this document and the sample source program “fatmain.c” for explanations of how this is done.)

symbol 183 \f "Symbol" \s 10 \h
Every report sent by the SFE to the SFE FA API user (received with sfefa_rcv) must be positively acknowledged by that user (with sfefa_ack). If a report is not acknowledged within sixty (60) seconds, the report will be re-sent resulting in a duplicate report. It is necessary to acknowledge only once for every unique report received. Consequently, duplicate reports need only be drained (sfefa_rcv) with a single acknowledgement being sent in return. If an output address does not acknowledge receipt of a report, it can, over an extended period of time, cause the output server to fill the socket to the output address, thereby causing the output server to briefly hang. This will cause the SFE Output server to terminate the connection to the API user forcing the API user to reconnect.

4.4 Using the API

A typical SFEFA API user using an input device would initiate API usage in the following manner:

symbol 183 \f "Symbol" \s 10 \h
Open a device by issuing an sfefa_open call. Note that communication must be established with the input server and can only proceed if the device being opened has been previously configured on the SFE and Flex.

symbol 183 \f "Symbol" \s 10 \h
Receive the open acknowledgement by issuing an sfefa_rcv call. The acknowledgement status vector will determine whether the device was successfully opened and subsequent processing can continue based on this acknowledgement status.

symbol 183 \f "Symbol" \s 10 \h
Send a trigger by issuing an sfefa_trigger call.

symbol 183 \f "Symbol" \s 10 \h
Receive the trigger acknowledgement by issuing an sfefa_rcv call. The acknowledgement status vector will determine whether the trigger was successfully sent and subsequent processing can continue based on this acknowledgement status.

symbol 183 \f "Symbol" \s 10 \h
The caller can close the device at any point after the sfefa_open call with a call to sfefa_close.

A typical SFEFA API user using an output device would initiate API usage

in the following manner:

symbol 183 \f "Symbol" \s 10 \h
Open a device by issuing an sfefa_open call. Note that communication must be established with the output server and can only proceed if the device being opened has been previously configured on the SFE and Flex.

symbol 183 \f "Symbol" \s 10 \h
Receive the open acknowledgement by issuing an sfefa_rcv call. The acknowledgement status vector will determine whether the device was successfully opened and subsequent processing can continue based on this acknowledgement status.

symbol 183 \f "Symbol" \s 10 \h
Receive a report by issuing an sfefa_rcv call. Be sure to implement proper management of both duplicate reports.

· Send a positive acknowledgement by issuing an sfefa_ack call and be sure to ignore duplicatereports.

symbol 183 \f "Symbol" \s 10 \h
The caller can close the device at any point after the sfefa_open call with a call to sfefa_close.

4.5 Interfacing to the IA API

The IA API, which facilitates inter process/network communication and client/server application development, is fully integrated and available for use concurrently with the FA API. The device identifier parameter, deviceid, within all FA API calls can be used interchangeably as the network object parameter, netobjectid, within the IA API.

With this interchangeability, the FA API user can use the IA API framework to simplify client/server application development while concurrently accessing vehicle data.

The IA API is covered in considerable detail elsewhere in the API documentation set.

4.6 Include Files

The following include file must be included within FA API applications:

 #include "sfe_def.h"

The directory containing this include file must be accessible when compiling source that uses the API calls.

4.7 Building with the API

The API's are developed using a standardized directory structure which allows some flexibility in where the files are located. The primary directory is referred to in the developer's user environment as an environment variable of the form SFEroot for the UNIX and VAX environments. This defines the location that will function as the base for the following directory structure:

 SFEroot - src

 - ia

 - la

 - ua

 - include

 - lib - RS6000

 - VAX

 - DELTA

 - HP

 - IU

 - SCO

 - bin - RS6000

 - VAX

 - DELTA

 - HP

 - IU

 - SCO

The object library containing FA API code is named as follows:

 UNIX:

libsfefa.a

 VAX:

libsfefa.olb

 DOS:

 c:\sfe\v00\root\lib\sfefa.lib

 Microsoft C v6.0 was used to compile this library.

 The following compiler options were specified during the build:

 - /c This options tells the compiler to compile with out linking.

 This just creates the object files but not the executable

 files.

 - nologo This suppresses the NMAKE logo display.

 - DSFE_DOS This is a symbolic constant that is used when compiling the

 SFE APIs.

 - Zi This options allows programs to be debugged with CodeView.

 - W2 This option set the compiler warning level to level 2 and

 ANSI compatible.

 - Od This option disables optimization of the code.

 - Zp This option packs structure members on the byte boundary.

 - Alfu This option allow you to change the attributes of the

 standard memory models. The changes are as follows:

 l - The long option means that far 32-bit pointers and

 addresses are used to address all functions.

 f - The far option specifies that all data pointers and

 addresses are far and that arrays are permitted to

 extend beyond a 64k segment.

 u - This option tells the compiler that the stack segment

 size does not necessarily coincide with the data segment

 size.

 - G2 This option designate code generation for the 80286 processor

 instruction set. Therefore these APIs will only run on

 DOS machines equipped with 80286 and higher model processors.

 The following linker options were specified during the build:

 - /CO This option is used to indicate that the compiled output can be used with

 Codeview.

 - /M This option produces a map file listing.

 - /NOI Causes the linker to distinguish between uppercase and lower case letters.

 - /NOD Causes default libraries to be ignored.

 - /statck:1000 This option sets the size of the stack.

 - /SE:200 Sets the maximum number of segments the program can have.

 Linked libraries

 llibs, lpc, lconfig, lsocket, lnetlib, sfefa, sfela, sfeua, sfeia

The following files must reside in the specified directories on the specified platforms for compiling and at run time.

Error message file: sfemsg.fil

UNIX: /applications/sfe/data

VAX: SFEroot:[data]

DOS: c:\app\sfe\data

Include files:

 - README.CUS (DOS only)

 - sfe_def.h

 - sfebh.h

 - sfedinf.h

 - sfeevt.h

 - sfefapro.h

 - sfefpk.h

 - sfeiapro.h

 - sfelapro.h

 - sfemsg.h

 - sfeninf.h

 - sfests.h

 - sfesvch.h

 - sfetimr.h

 - sfetype.h

 - sfeuapro.h

UNIX: $SFEroot/include

VAX: SFEroot:[include]

DOS: c:\sfe\v00\root\include\cust

Assumptions
DOS

 - C:\ftpdevkt\include This must be the directory where FTP include files

 are stored.

 - LIB in the AUTOEXEC.BAT includes a path to the SFE API libraries.

 - INCLUDE in the AUTOEXEC.BAT includes a path to the file sfe_def.h.

 - The command NMAKE is used with the makefile to make a .exe files.

4.8 Debugging an Application

The FA API has integrated debugging features completely based on the

debugging functionality detailed elsewhere in the API documentation set. This integrated debugging facility is used within the FA API to trace program/module invocation and execution. The following environment variables must be set to enable FA API tracing. Note that the API still functions normally, however, a significant amount of information will be dumped to the standard output and program execution will typically slow down.

 UNIX: (non SFE/Monitor started)

 $ SFEdebugmode=enabled; export SFEdebugmode

 $ SFEdebugapp=sfe; export SFEdebugapp

 $ SFEdebugsystem=fa; export SFEdebugsystem

 $ SFEdebuglevel=9; export SFEdebuglevel

 VAX:

 $ define SFEdebugmode enabled

 $ define SFEdebugapp sfe

 $ define SFEdebugsystem fa

 $ define SFEdebuglevel 9

 DOS/Win32:

 $ set sfedebugmode=enabled

 $ set sfedebugapp=sfe

 $ set sfedebugsystem=fa

 $ set sfedebuglevel=9

5. IA - Inter Process/Network Communications API

NOTE: The SFE group has created a general set of utility routines that are useful in the development of client/server applications. Availability and support of these routines are subject to SFE team approval.

The IA API simplifies local and network interprocess communications between cooperating programs over a TCP/IP network. It offers several benefits to the API user:

symbol 183 \f "Symbol" \s 8 \h
Simplifies the development of client/server development through the implementation of an event driven architecture.

symbol 183 \f "Symbol" \s 8 \h
Insulates the user from a changing transport layer interface. Currently sockets are being used to provide API functionality, however, newer modern communication interfaces (remote procedure calls [RPC], distributed computing environment [DCE]) can be integrated transparently from an API user's perspective.

symbol 183 \f "Symbol" \s 8 \h
Portability. The APIs offer portability and interoperability within a heterogeneous vendor hardware/OS environment.

symbol 183 \f "Symbol" \s 8 \h
Establish a message/record structure over the TCP/IP stream.

symbol 183 \f "Symbol" \s 8 \h
Integrated error handling, error, traffic, and debug logging.

5.1 System Requirements

The IA API requires the following system requirements:

symbol 183 \f "Symbol" \s 8 \h
A TCP/IP accessible network.

5.2 System Environment

The IA API requires correct network configuration. The definition is accomplished by:

symbol 183 \f "Symbol" \s 8 \h
Defining the hosts on which the communicating processes reside. On UNIX hosts, this would include inserting the node information within ‘/etc/hosts’ as follows:

130.178.34.3 galileo ekpa02 # SFE host

NOTE: the internet address and host names will be dependent on your site host configuration.

symbol 183 \f "Symbol" \s 8 \h
Defining the communicating process network services. On UNIX hosts, this would include inserting definitions within ‘/etc/services’ as follows:

myservice 10000/tcp # my process

NOTE: VAX and DOS platform network definitions methods are dependent on the vendor TCP/IP and/or sockets implementation.

5.3 Concepts

The IA API calls are abstracted into two general models:

symbol 183 \f "Symbol" \s 8 \h
The Event Driven Model.

symbol 183 \f "Symbol" \s 8 \h
The Base Level Model

5.3.1 The Event Driven Model

The event driven model is based on the following functionality:

symbol 183 \f "Symbol" \s 8 \h
Initializing the event driven model. This is accomplished through a call to ‘sfeia_initialize’.

symbol 183 \f "Symbol" \s 8 \h
Indicating an interest in a certain set of events. A user written callback is registered to the IA API which is called upon event notification. All network communication flow control and multiplexing is handled on behalf of the API user.

symbol 183 \f "Symbol" \s 8 \h
Invoking the event processing main loop. The user relinquishes control to the IA API at which point event notification and callback invocation can begin.

Communication entities that were not created through the IA API can be added/deleted to the IA API event processing loop through a call the ‘sfeia_attach’ or ‘sfeia_detach’, respectively.

5.3.2 The Base Level Model

The base level model consists of functionality that permits user controlled interprocess and internetwork communication. It consists of primitives that permit the IA API user to:

symbol 183 \f "Symbol" \s 8 \h
Establish servers. Servers are established through a set of calls to ‘sfeia_configure’ and ‘sfeia_listen’.

symbol 183 \f "Symbol" \s 8 \h
Establish clients. Clients are established through a set of calls to ‘sfeia_configure’ and ‘sfeia_connect’.

symbol 183 \f "Symbol" \s 8 \h
Send messages between clients and servers through calls to ‘sfeia_send’.

symbol 183 \f "Symbol" \s 8 \h
Receive messages between clients and servers through calls to ‘sfeia_rcv’.

symbol 183 \f "Symbol" \s 8 \h
Close previously established servers or clients through a set of calls to ‘sfeia_close’ and ‘sfeia_destroy’.

symbol 183 \f "Symbol" \s 8 \h
Defines events and establishes the event distribution mechanism.

5.4 Error Handling within the API

All API errors are communicated through:

symbol 183 \f "Symbol" \s 8 \h
A longword status value returned by the API call.

symbol 183 \f "Symbol" \s 8 \h
A status vector parameter loaded by the API call indicating detailed error status values. This value will be filled when the status value returns an error.

5.5 Using the API

A typical IA API user using the base level model would invoke the following

sequence of operations:

symbol 183 \f "Symbol" \s 8 \h
Initialize the asynchronous IA API interface by issuing a call to sfeia_initialize.

symbol 183 \f "Symbol" \s 8 \h
Configure a network object by issuing a call to sfeia_configure. Note that the network object type, whether it is a server or a client, has yet been determined.

symbol 183 \f "Symbol" \s 8 \h
If the user wishes to open a client connection to a server, a call to sfeia_connect would be issued. If, on the other hand, a server connection is to be established, then a call to sfeia_listen would be issued.

symbol 183 \f "Symbol" \s 8 \h
Add event notification callbacks by issuing a call to sfeia_callback_add.

NOTE: many callbacks can be established for a single network object - and a single event type can be established repeatedly for a single network object. Each callback is called based on the event that is received and in the order in which the callbacks were established.

symbol 183 \f "Symbol" \s 8 \h
Invoke the IA API mainloop event processor. Note that at this point the user has relinquished control of the program to the IA API. Processing control is only returned to the caller upon event reception and associated callback invocation.

Typically within the event callbacks, the user can:

symbol 183 \f "Symbol" \s 8 \h
Send a message by issuing a call to sfeia_send.

symbol 183 \f "Symbol" \s 8 \h
Wake another communication partner by issuing a call to sfeia_wake.

symbol 183 \f "Symbol" \s 8 \h
Acknowledge a message by issuing a call to sfeia_ack.

At any point after the configuration can a network object can be closed by issuing a call to sfeia_close.

Resources are freed by calling sfeia_destroy.

NOTE: wait states (sleep calls etc...) should be avoided in callbacks since the API can not control event notification until the callback exits.

In the case where a user has an established socket and wishes to use the IA API asynchronous interface to control processing flow, a call to sfeia_attach would be issued. This will permit non-IA API created clients to be handled in the same manner in which IA API created clients are.

A typical IA API user using the base level model would invoke the following sequence of operations:

symbol 183 \f "Symbol" \s 8 \h
Configure a network object by issuing a call to sfeia_configure.

NOTE: the network object type, whether it is a server or a client, has

yet been determined.

symbol 183 \f "Symbol" \s 8 \h
If the user wishes to open a client connection to a server, a call to sfeia_connect would be issued. If, on the other hand, a server connection is to be established, then a call to sfeia_listen would be issued.

symbol 183 \f "Symbol" \s 8 \h
Send a message by issuing a call to sfeia_send.

symbol 183 \f "Symbol" \s 8 \h
Receive a message by issuing a call to sfeia_rcv.

symbol 183 \f "Symbol" \s 8 \h
At any point after the configure can a network object be closed by issuing a call to sfeia_close.

symbol 183 \f "Symbol" \s 8 \h
Free up resources associated with the network object by calling sfeia_destroy.

NOTE: there are several convenience, inquiry and control functions available to the IA API user (note, however, that not all are currently available), each available to either the synchronous or asynchronous API user.

5.6 Include Files

The following include file must be included within IA API applications:

 #include "sfe_def.h"

The directory containing this include file must be accessible when compiling source that uses the API calls.

5.7 Building with the API

The object library containing IA API code is named as follows:

 UNIX:

 $SFElib/sfeia.a

 where

 $SFElib is the environment variable pointing to the

 directory containing API object archive libraries.

 VAX:

 *** Include VAX library definition ***

 DOS:

 sfeia.lib

5.8 Debugging an Application

The IA API has integrated debugging features completely based on the debugging functionality detailed in the UA API documentation set. This integrated debugging facility is used within the IA API to trace program/module invocation and execution.

The following environment variables must be set to enable IA API tracing. Note that the API still functions normally, however, a significant amount of information will be dumped to the standard output and program execution will typically slow down.

UNIX:

$ SFEdebugmode=enabled; export SFEdebugmode

$ SFEdebugapp=sfe; export SFEdebugapp

$ SFEdebugsystem=fa; export SFEdebugsystem

$ SFEdebuglevel=0; export SFEdebuglevel

VAX:

$ define SFEdebugmode enabled

$ define SFEdebugapp sfe

$ define SFEdebugsystem fa

$ define SFEdebuglevel 0

*** confirm VAX debug configuration ***

DOS/Win32:

$ set sfedebugmode=enabled

$ set sfedebugapp=sfe

$ set sfedebugsystem=fa

$ set sfedebuglevel=0

6. UA/LA – Utilities/Librar API

NOTE: The SFE group has created a general set of utility routines that are useful in the development of client/server applications. Availability and support of these routines are subject to SFE team approval.

All API code comes under copyright laws. To access the copyright information from a program, use the sfela_copyright function.

The UA API simplifies functions common to all client/server development:

symbol 183 \f "Symbol" \s 8 \h
Error handling and logging.

symbol 183 \f "Symbol" \s 8 \h
Message traffic logging.

symbol 183 \f "Symbol" \s 8 \h
Application component debugging.

The use of these routines will increase programmer productivity and quality

through the re-use of previously constructed and tested components.

Several features make these utility routines useful:

symbol 183 \f "Symbol" \s 10 \h
Fixed size logging files - defined by the maxrec argument, preventing the log file from growing indefinitely. This is of great advantage to an application running on a limited disk resource system. The default for this value is 10000 records.

symbol 183 \f "Symbol" \s 10 \h
The ability to open an existing file for logging operations - this may be useful for audit type logs where the destruction of the old file is not desired.

symbol 183 \f "Symbol" \s 10 \h
Automatic data/time stamping upon log initialization.

symbol 183 \f "Symbol" \s 10 \h
Standard format output accompanied by a time stamp.

6.0.1 The Message Traffic Log

Each message traffic entry contains the following information:

symbol 183 \f "Symbol" \s 8 \h
A time stamp.

symbol 183 \f "Symbol" \s 8 \h
The message source.

symbol 183 \f "Symbol" \s 8 \h
The message destination.

symbol 183 \f "Symbol" \s 8 \h
The message size.

symbol 183 \f "Symbol" \s 8 \h
The message type.

symbol 183 \f "Symbol" \s 8 \h
A dump of the message text in either ASCII, or hexadecimal format.

The following illustrates an example of a message with its text

displayed in hexadecimal format:

Tue Feb 23 12:19:10 1993 From: sfe4fnp0, To: sfe4frp2, Size: 32, Type: INCOMING

 52 4E 54 46 54 43 50 4F 55 54 30 35 0 0 4 96 :RNTFTCPOUT05....

 0 0 1 87 FF FF FF FF 0 0 0 0 0 0 0 0 :................

The following message traffic log operations are available:

symbol 183 \f "Symbol" \s 8 \h
 sfeua_trf_init. To initialize the traffic log. This must be completed successfully prior to subsequent traffic logging routines.

symbol 183 \f "Symbol" \s 8 \h
sfeua_trf_write. To write an entry into the traffic log.

6.0.2 The Error Log

Each error log entry contains the following information:

symbol 183 \f "Symbol" \s 8 \h
A time stamp.

symbol 183 \f "Symbol" \s 8 \h
A list of errors. Each error entry consists of an error code and an error description.

The following illustrates an example of an error log entry.

Mon Jan 18 12:06:22 1993

 - 000177 : Error connecting IPC object <sfe4aap0>

 - 000230 : Error connecting network object

 - 000196 : Error connecting network id

 - 000254 : Error attempting socket system service <connect>

 - 000100 : Error attempting system call

 - 000079 : Connection refused

The following error log operations are available:

symbol 183 \f "Symbol" \s 8 \h
sfeua_error_write. A general routine that permits writing errors to an output destination.

symbol 183 \f "Symbol" \s 8 \h
sfeua_log_init. To initialize the error log. This must be completed successfully prior to subsequent error logging routines.

symbol 183 \f "Symbol" \s 8 \h
sfeua_log_write. To write a null-terminated string to a previously initialized log.

symbol 183 \f "Symbol" \s 8 \h
sfeua_log_vwrite. To write the contents of an error status vector to a previously initialized log.

6.0.3 The Application Debugging Log

Each debugging log entry contains the following information:

symbol 183 \f "Symbol" \s 8 \h
A time stamp in 10 micro second precision (10-5 second).

symbol 183 \f "Symbol" \s 8 \h
An API programmer defined debug string.

The following illustrates an example of an application debugging entry.

23 164249.12345 sfefmt>KHTUT908 S081000Y0026TCPIN05 022393164249TRIG S0000 9210663510

23 164250.94674 sfefmt>** Trigid for normal trigger: 2 or hex 02 **

23 164250.94692 sfefmt>** Enque Node called. Curr. # nodes : 1

23 164250.94709 sfefmt>** Sending trigger on Trigger Server sfe4sxp4 **

23 164250.94769 sfefmt>Tsmt loop - TCPIN05 tid 0002 seq 0810 0 seconds

23 164251.20517 sfefmt>** Trig transmit called with device id 701 **

23 164251.21435 sfefmt>** Send next called for deviceid 701 **

23 164251.22157 sfefmt>** devid: 701 devname: TCPIN03 ttype: N send: 967aeind: A

23 164251.23204 sfefmt>** Send Trigger called with device id 701 **

23 164251.23859 sfefmt>** Trig. data len: 26 packet size: 85 **

The following debugging operations are available:

symbol 183 \f "Symbol" \s 8 \h
sfeua_debug_init. To initialize the debug log. This must be completed successfully prior to subsequent debug logging routines.

symbol 183 \f "Symbol" \s 8 \h
sfeua_debugfull. To write a null-terminated string to a previously initialized log. Filtering of debug message can be done on a per application, subsystem, and level basis.

7. FA - Module and Structure Reference

The following section describes the calls and structures available within the SFEFA API.

NOTE: All attempts will be made to retain upward compatibility for subsequent API versions, however, the SFE development group reserves the sole right to modify or change the module and structure interface.

7.1 Structure Reference

All API message communication is conveyed through a ‘C’ language SFE event structure. This structure is typedefed as ‘SFEevent’.

/*+

Name:
sfeevth

Type:
struct sfeevth

Usage:
The event header definition.

-*/

struct sfeevth

{

/*+

Name:
sfeevth_z_type

Type:
SFEtype

Usage:
Event type. SFE_K_EVENT... define constants define the particular event types.

-*/

SFEtype
sfeevth_z_type ;

/*+

Name:
sfeevth_z_name

Type:
SFEname

Usage:
The name of the originator of the event. In the case

of an incoming message, for example, this would contain

the source of the message.

-*/

SFEname

sfeevth_z_name ;

/*+

Name:
sfeevth_z_tag

Type:
SFEtag

Usage:
The tag number identifying the message.

-*/

SFEtag
sfeevth_z_tag ;

/*+

Name:
sfeevth_z_options

Type:
SFEoptions

Usage:
Options to specific to the event. Currently this field is only supported for unsolicited packet events where this value would indicate whether the message requires an acknowledgement. A value of zero (0) indicates that the message does not need to be acknowledged. A value of one (1) indicates that the message does require a response.

-*/

SFEoptions
sfeevth_z_options ;

/*+

Name:
sfeevth_z_status_vector

Type:
SFEstatusvector

Usage:
The status vector indicating the processing status of an event. This value will be meaningless for most events with the exception of an acknowledgement message which may contain status information regarding the processing state of that message.

-*/

SFEstatusvector
sfeevth_z_status_vector ;

/*+

Name:
sfeevth_z_data_size

Type:
SFEsize

Usage:
The size of the data that this event communicates.

In the case where there is no data that accompanies the event, this field would contain the value zero (0).

In the case where there is data that accompanies the event, this field would contain the data size and the data would be concatenated to the end of the event header.

-*/

SFEsize
sfeevth_z_data_size ;

} ; /* end struct sfeevth */

 typedef struct sfeevth SFEevent ;

The following events can be received by the SFEFA API. Each is ‘defined’ within the SFEFA API header include files.

SFE_K_EVENT_UNSOLICITED_PKT - Indicates that an unsolicited event has been

received. Flex reports are communicated with this event type.

SFE_K_EVENT_ACK - Indicates that a trigger acknowledgement has been received.

After a trigger has been sent, the SFE input server will acknowledge the receipt of the

trigger. The event structure must be examined to determine if the acknowledgement is

positive (trigger has been successfully received) or negative (trigger was not accepted).

The status vector within the event stucture will indicate this as follows. The statusvector's

word count is zero (0) if the acknowledgement is positive. The word count will be

 nonzero if the acknowledgement is negative and the status vector will contain the error.

SFE_K_EVENT_PARTNER_DEMISE - Indicates that the communication partner - the

input or output server (depending on the device type) connection has been

terminated. This would only normally occur if the SFE or server has been shutdown.

Application specific data, for example the SFE report structure used to communicate Flex reports, is concatenated to the end of the event structure. The report structure, typedefed as ‘SFEflexreport’, is shown below.

/* Flex API packet header. */

struct sfefpkh

{

struct sfebh
sfefpkh_r_header ;

SFEtype
sfefpkh_z_type ;

} ; /* end struct sfefpkh */

/* report/document packet */

struct sfefpkr

{

struct sfefpkh

sfefpkr_r_header ;

SFEopcode

sfefpkr_z_opcode ;

SFEubyte

sfefpkr_b_format ;

SFEubyte

sfefpkr_b_reserved0[2] ;

SFEpv

sfefpkr_z_pvi ;

SFEsvi

sfefpkr_z_svi ;

SFEuword

sfefpkr_w_reserved1 ;

SFEname

sfefpkr_z_idevicename ;

SFEubyte

sfefpkr_b_reserved2[3] ;

SFElongword

sfefpkr_l_triggerid ;

SFEsize

sfefpkr_z_data_size ;

} ; /* end struct sfefpkr */

Note that the report data is concatenated to the flex report structure.

7.2 sfefa_ack

sfefa_ack

Acknowledge a received report.

Facility

SFEFA - Strategic Front End Flex Core Communication API.

Syntax

SFEstatus sfefa_ack (

SFEhandle
 deviceid,

SFEubyte
 *buffer_ptr,

SFEsize
 buffersize,

SFEtag

 tag,

SFEstatusvector *ackstatus_vector_ptr,

SFEstatusvector *status_vector_ptr)

Description

The sfefa_ack routine will acknowledge a previously sent report. The reception of the ack by the core processes will signify the complete processing of a single report.

To positively acknowledge a report, provide an empty (nulled out) acknowledgement status vector. To negatively acknowledge a report, load the acknowledgement status vector with error status values (contained in the sfemsg.h file).

Parameters

deviceid

Usage:

SFEhandle

Access:
write only

Mechanism:
by value

A value uniquely identifying the Flex device to the API. This is the deviceid value returned from the sfefa_open call.

*buffer_ptr

Usage:

SFEubyte (array)

Access:
read only

Mechanism:
by reference

The array of bytes that make up the data portion of the buffer to send.

buffersize

Usage:

SFEsize

Access:
read only

Mechanism:
by value

The size, in bytes, of the buffer argument.

tag

Usage:

SFEtag

Access:
read only

Mechanism:
by value

The tag identifying the report to acknowledge

*ackstatus_vector_ptr

Usage:

SFEstatusvector

Access:
modify

Mechanism:
by reference

The status vector loaded with the processing status of the message being acknowledged. An empty status vector will indicate a positive acknowledgement. A status vector filled with error values (contained in sfemsg.h) indicate a negative acknowledgement.

*status_vector_ptr

Usage:

SFEstatusvector

Access:
modify

Mechanism:
by reference

A vector of longwords that will be written to with the error status information. This vector will not be written to if errors did not occur. If more errors occur that can be written to the status-vector, the errors will be overwritten in a first-in-first-out fashion.

Return Values

Usage:

SFEstatus

Access:
write only

Mechanism:
by value

This longword value is returned to the caller upon routine completion. Values returned are listed below:

[S] SFE__NORMAL

Normal successful completion

[E] SFE__ERRIPCACK

Error acknowledging message via IPC object

Indicates a bad return code from the internal call to the function sfeia_ack.

The status vector will contain the error(s) from the function call.

Examples:

To send a positive acknowledgement:

memset ((char *) ack_status_vector, 0x00, sizeof (ack_status_vector));

sfestatus = sfefa_ack (

deviceid, NULL, 0,

event_ptr -> sfeevth_z_tag,

(SFEstatusvector *) ack_status_vector,

(SFEstatusvector *) status_vector);

To send a negative acknowledgement (this will result in a resend of the report):

sfela_error (&ack_status_vector, 1, SFE__ERRCODE);

<where SFE__ERRCODE is a valid error label from sfemsg.h>

sfestatus = sfefa_ack (

deviceid, NULL, 0,

event_ptr -> sfeevth_z_tag,

(SFEstatusvector *) ack_status_vector,

(SFEstatusvector *) status_vector);

Note that any error code can be used (except SFE__NORMAL which has a value of zero

and will be interpreted as a positive ack). The output server will treat all error codes the

same. Use a meaningful error label which best describes the situation.

7.3 sfefa_close

sfefa_close

Terminate an established connection to a Flex device

Facility

SFEFA - Strategic Front End Flex Core Communication API.

Syntax

SFEstatus sfefa_close (

SFEhandle
deviceid,

SFEstatusvector
*status_vector_ptr)

Description

The sfefa_close routine will terminate a previously established device connection to the SFE application. Upon successfully closing the device connection, further communication using that device is not possible.

Parameters

deviceid

Usage:

SFEhandle

Access:

read only

Mechanism:
by value

The channel returned from the sfefa_open call identifying the Flex device connection to close.

*status_vector_ptr

Usage:

SFEstatusvector

Access:

modify

Mechanism:
by reference

A vector of longwords that will be written to with the error status information. This vector will not be written to if errors did not occur. If more errors occur that can be written to the status-vector, the errors will be overwritten in a first-in-first-out fashion.

Return Values

Usage:

SFEstatus

Access:

write only

Mechanism:
by value

This longword value is returned to the caller upon routine completion. Values returned are listed below.

[S] SFE__NORMAL

Normal successful completion

[E] SFE__ERRIPCLOSE

Error closing IPC object

Indicates a bad return code from the internal call to the function sfeia_close.

The status vector will contain the error(s) from the function call.

[E] SFE__ERROBJDESTROY

Error destroying network object

Indicates a bad return code from the internal call to the function sfeia_destroy

(used to free up memory allocated for the client).

The status vector will contain the error(s) from the function call.

7.4 sfefa_connectionid

sfefa_connectionid

To get the connection id (file descriptor) for a device.

Facility

SFEFA - Strategic Front End Flex Core Communication API.

Syntax

int sfefa_connectionid (

SFEhandle
deviceid)

Description

This routine will return the connection id, or file (socket)descriptor, of a previously opened device.

Parameters

deviceid

Usage:

SFEhandle

Access:
read only

Mechanism:
by value

The device id returned in a previously successful device open call.

Return Values

Usage:

integer

Access:
write only

Mechanism:
by value

The returned connection id, or file descriptor, of the device.

-1 is returned if the device id is invalid.

7.5 sfefa_decode

sfefa_decode

To decode a flex packet into a platform dependent representation.

Facility

SFEFA - Strategic Front End Flex Device Communications API

Syntax

SFEstatus sfefa_decode (

struct sfefpkh *fpkh_ptr,

struct sfefpkh *dfpkh_ptr,

SFEsize dsize)

Description

This routine will decode the input flex packet into a platform dependent native format. For example this routine will decode a message sent by an IBM RS/6000 into a representation understood by an Intel based platform.

Note that the encoding and decoding of flex packets is performed internally, on behalf of the caller, within the sfefa_trigger and sfefa_rcv call and hence is not required by the caller that is only using these calls.

Parameters

*fpkh_ptr

Usage:

struct sfefpkh

Access:

read only

Mechanism:
by reference

The flex packet to decode.

*dfpkh_ptr

Usage:

struct sfefpkh

Access:

write only

Mechanism:
by reference

The decoded flex packet.

dsize

Usage:

SFEsize

Access:

read only

Mechanism:
by value

The size of the data portion of the packet.

Return Values

[S] SFE__NORMAL

Normal successful completion.

[E] SFE__INVTYPE

Invalid type

The packet must be an open, trigger or report type.

[E] SFE__INVFLDVALUE

Invalid field value for translation

Indicates a bad return code from the internal call to the function

sfefa__fldxlate.

This error will occur if the field type is not ebcidic, ascii, bcd, binary or bit.

This error can also occur if the type is binary but the field does not contain a

number.

[E] SFE__INVFLDTYPE

Invalid field type for translation

Indicates a bad return code from the internal call to the function

sfefa___fldxlate.

This error will occur if the field type is binary and the size is greater than

4 bytes.

7.6 sfefa_encode

sfefa_encode

To encode a flex packet into a standard network format for transmission across the network.

Facility

SFEFA - Strategic Front End Flex Device Communications API

Syntax

SFEstatus sfefa_encode (

struct sfefpkh *fpkh_ptr,

struct sfefpkh *efpkh_ptr,

SFEsize *retlen_ptr)

Description

This routine will encode the input flex packet into a format suitable for network transmission between platforms with different data representations. For example this routine will enable communication between an Intel based platform and IBM RS/6000 where the internal representation of data within the flex packet is different. Berkeley routines htonl() and htons() are used to map long and short integers respectively.

Note that the encoding and decoding of flex packets is performed internally, on behalf of the caller, within the sfefa_trigger and sfefa_rcv call and hence is not required by the caller that is only using these calls.

Parameters

*fpkh_ptr

Usage:

struct sfefpkh

Access:
read only

Mechanism:
by reference

The flex packet to encode.

*efpkh_ptr

Usage:

struct sfefpkh

Access:
write only

Mechanism:
by reference

The encoded flex packet.

*retlen_ptr

Usage:

SFEsize

Access:

write only

Mechanism:
by reference

The returned length of the encoded packet.

Return Values

[S] SFE__NORMAL

Normal successful completion.

7.7 sfefa_open

sfefa_open

Establish a connection to the SFE Core processing server.

Facility

SFEFA - Strategic Front End Flex Core Communication API.

Syntax

SFEstatus sfefa_open (

SFEhandle
 *deviceid_ptr,

SFEname
 *devicename_ptr,

SFEtype
 devicetype,

SFEdeviceinfo
 *deviceinfo_ptr,

SFEname
 *hostname_ptr,

SFEname
 *servername_ptr,

SFEoptions
 options,

SFEstatusvector *status_vector_ptr)

Description

The sfefa_open routine will open communications as a device with Flex on behalf of a client application. Upon successfully opening the device other SFEFA API calls may be used.

Parameters

*deviceid_ptr

Usage:

SFEhandle

Access:
write only

Mechanism:
by reference

The returned device number uniquely identifying the Flex device.

This pointer should be set to NULL before the call.

*devicename_ptr

Usage:

SFEname

Access:
read only

Mechanism:
by reference

The Flex device name.

devicetype

Usage:

SFEtype

Access:
read only

Mechanism:
by value

The type of the Flex device this is. The following device types are supported:

SFE_K_DEVTYPE_INPUT

This is a Flex input address or device.

SFE_K_DEVTYPE_OUTPUT

This is a Flex output address or device.

*deviceinfo_ptr

Usage:

SFEdeviceinfo

Access:
read only

Mechanism:
by reference

Information further defining the device.

This field is reserved for future use and must be set to zero (0).

*hostname_ptr

Usage:

SFEname

Access:
read only

Mechanism:
by reference

The host name of the core processor application that is serving the device.

*servername_ptr

Usage:

SFEname

Access:
read only

Mechanism:
by reference

The network name of the core processor application that is serving the device.

options

Usage:

SFEoptions

Access:
read only

Mechanism:
by value

A longword mask defining the options further defining the device.

The options argument is reserved for future use and must be set to zero (0).

statusvector

Usage:

SFEstatusvector

Access:
modify

Mechanism:
by reference

A vector of longwords that will be written to with the error status information. This vector will not be written to if errors did not occur. If more errors occur that can be written to the status-vector, the errors will be overwritten in a first-in-first-out fashion.

Return Values

Usage:

SFEstatus

Access:
write only

Mechanism:
by value

This longword value is returned to the caller upon routine completion. Values returned are listed below:

[S] SFE__NORMAL

Normal successful completion.

[E] SFE__INVNAME

Invalid name.

Either the devicename_ptr or the servername_ptr is equal to NULL.

[E] SFE__INVTYPE

Invalid type.

The device type is not SFE_K_DEVTYPE_INPUT or

SFE_K_DEVTYPE_OUTPUT.

[E] SFE__INVOPTION

Invalid option.

The option parameter was not set to 0 (zero).

[E] SFE__ERRIPCCFG

Error configuring an IPC object.

Indicates a bad return code from the internal call to the function

sfeia_configure (used to configure the client as a network object).

The status vector will contain the error(s) from the function call.

[E] SFE__ERRIPCCONN

Error connecting to an IPC object.

Indicates a bad return code from the internal call to the function

sfeia_connect (used to create a channel between the client and it's server).
The status vector will contain the error(s) from the function call.

7.8 sfefa_rcv

sfefa_rcv

Receive a report or acknowledgement from a Flex device

Facility

SFEFA - Strategic Front End Flex Core Communication API.

Syntax

SFEstatus sfefa_rcv (

SFEhandle
 deviceid,

SFEevent
 *event_ptr,

SFEoptions
 options,

SFEtimer
 *timeout_ptr,

SFEstatusvector *status_vector_ptr)

Description

The SFEFA_RCV routine will allow an application to receive a Flex device data packet (also known as a report or document) or an acknowledgement event. The report or acknowledgement information is contained in an SFEIA (interprocess communications) API event. In the case of a report, the data portion of the event contains the actual report data structure.

All reports will be contained within an SFE_K_EVENT_UNSOLICITEDPKT type event and all acknowledgement will be contained within an SFE_K_EVENT_ACK type event.

Note that ALL reports received by the caller must be acknowledged (sfefa_ack) or that report will be sent to the caller again.

All network packet decoding is performed on behalf of the user within this routine.

The return code from the call and the received packet must be examined before

processing. An error return code indicates no packet was returned. An

SFE__NORMAL return code means a packet was returned. In this case, examine

the event pointer to determine whether the event is an acknowledgement or a

report. If the event is an acknowledgement, then the event's status vector must

be checked to determine whether the ack is positive or negative. The fatmain test

program has example code that illustrates how the sfefa_rcv function should be

used and how the report data can be accessed.

Parameters

deviceid

Usage:

SFEhandle

Access:
read only

Mechanism:
by value

A value uniquely identifying the Flex device to the

API. This is the device-id value returned from the

sfefa_open call.

*event_ptr

Usage:

SFEevent

Access:
read only

Mechanism:
by reference

The received event. The event structure is defined with the SFE interprocess API description. The user must allocate a buffer large enough to contain the largest message that can be received. The data portion of the event is located at the end of the event structure.

Note that if the word count of the status vector within the event structure is nonzero when reading an acknowledgement, the event is a negative acknowledgement. The status vector portion should be examined for error codes passed from the server to the client.

The data portion of the event, a sfefpkr structure, contains the opcode, triggerid, pvi, svi, and report data.

options

Usage:

SFEoptions

Access:
read only

Mechanism:
by value

The options used to perform the receive operation. This is reserved for future use and must be set to zero (0).

*timeout_ptr

Usage:

SFEtimer

Access:

read only

Mechanism:
by reference

The time-out interval to wait to receive data if there is currently no data available to receive. The call will return if either the time-out expires OR data is received.

*status_vector_ptr

Usage:

SFEstatusvector

Access:
modify

Mechanism:
by reference

A vector of longwords that will be written to with the error status information. This vector will not be written to if errors did not occur. If more errors occur that can be written to the status-vector, the errors will be overwritten in a first-in-first-out fashion.

Return Values

Usage:

SFEstatus

Access:
write only

Mechanism:
by value

This longword value is returned to the caller upon routine completion. Values returned are listed below.

[S] SFE__NORMAL

Normal successful completion.

[E] SFE__NOPACKET

No packet present.

Indicates a specific return code from the internal call to the function

sfeia_rcv (used to read from the socket between the client and it's server).

The read was performed but no data was found on the socket for the client.

[E] SFE__PARTNERDEMISE

The network object partner has terminated communications.

Indicates a specific return code from the internal call to the function sfeia_rcv.

An exception occurred on the socket read which indicates that the server

has terminated.

[E] SFE__ERRIPCRCV

Error receiving a message via an IPC object

Indicates a bad return code from the internal call to the function sfeia_rcv.

The status vector will contain the error(s) from the function call.

7.9 sfefa_trigger

sfefa_trigger

Send a trigger to a Flex device.

Facility

SFEFA - Strategic Front End Flex Core Communication API.

Syntax

SFEstatus sfefa_trigger (

SFEhandle
 deviceid,

SFEpvi
 *pvi_ptr,

SFEsvi

 *svi_ptr,

SFEtype
 triggertype,

SFEfunction
 function,

SFEubyte
 *data_ptr,

SFEsize
 datasize,

SFEulongword triggerid,

SFEchkdigit
 *chkdigit_ptr,

SFEoptions
 options,

SFEstatusvector *status_vector_ptr)

Description

The sfefa_trigger routine will send either a normal trigger, a scratch pad, or set of test results to a previously opened Flex device.

Upon processing by the input server an acknowledgement is sent back to the caller indicating the status of the trigger processing. Note that this implies that the

return code from this call indicates whether the trigger request was successfully sent to the input server and NOT whether the trigger was processed. Only the acknowledgement

can indicate the trigger processing status.

All network packet encoding is performed on behalf of the user within this routine.

Parameters

deviceid

Usage:

SFEhandle

Access:
write only

Mechanism:
by value

A value uniquely identifying the Flex device to the API. This is the deviceid value returned from the sfefa_open call.

*pvi_ptr

Usage:

SFEpvi

Access:
read only

Mechanism:
by reference

The primary vehicle identifier of the vehicle being triggered.

*svi_ptr

Usage:
SFEsvi

Access:
read only

Mechanism:
by reference

The secondary vehicle identifier of the vehicle being triggered.

triggertype

Usage:

SFEtype

Access:
read only

Mechanism:
by value

The trigger types that are supported are:

SFE_K_TRIGTYPE_SCRATCHPAD

This is a scratchpad trigger operation.

SFE_K_TRIGTYPE_TESTRES

This is a test results trigger operation.

SFE_K_TRIGTYPE_NORMAL

This is a normal vehicle trigger.

SFE_K_TRIGTYPE_PASS

This is a Flex pass through transaction.

SFE_K_TRIGTYPE_BLIND_NEXT

This is a Flex “blind” trigger (no PVI/SVI).

 SFE_K_TRIGTYPE_SET_OUT

This is a normal vehicle trigger for a vehicle that has been Set Out on Flex.

function

Usage:

SFEfunction

Access:
read only

Mechanism:
by value

The function describing the triggering operation to perform.

The following functions are supported:

SFE_K_TRIGFUNC_GETNEXT

Perform a get next trigger operation.

SFE_K_TRIGFUNC_GETSPECIFIC

Perform a get specific trigger operation.

*data_ptr

Usage:

SFEubyte (array)

Access:
read only

Mechanism:
by reference

The array of bytes that make up the data portion of the buffer to send.

datasize

Usage:

SFEsize

Access:
read only

Mechanism:
by value

The size, in bytes, of the buffer argument.

triggerid

Usage:

SFEulongword

Access:

read only

Mechanism:
by value

The triggerid used for trigger processing.

options

Usage:

SFEoptions

Access:

read only

Mechanism:
by value

A longword mask defining the options further defining the device.

The options argument is reserved for future use and must be set to zero (0).

*chkdigit_ptr

Usage:

SFEchkdigit

Access:
read only

Mechanism:
by reference

The checkdigit used for trigger processing.

*status_vector_ptr

Usage:

SFEstatusvector

Access:
modify

Mechanism:
by reference

A vector of longwords that will be written to with the error status information. This vector will not be written to if errors did not occur. If more errors occur that can be written to the status-vector, then the errors will be overwritten in a first-in-first-out fashion.

Return Values

Usage:

SFEstatus

Access:
write only

Mechanism:
by value

This longword value is returned to the caller upon routine completion. Values returned are listed below:

[S] SFE__NORMAL

Normal successful completion

[E] SFE__INVPVISVI

Invalid pvi or svi.

Can be caused by any of the following:

- both pvi_ptr and svi_ptr are NULL

- pvi_ptr is NULL and svi = 0

- pvi greater than 9 digits

- svi_ptr is NULL and pvi = 0

- svi greater than 15 digits

- checkdigit greater than 2 digits

[E] SFE__INVFUNCTION

Invalid trigger function.

Trigger function must be SFE_K_TRIGFUNC_GETNEXT

or SFE_K_TRIGFUNC_GETSPECIFIC.

[E] SFE__INVTRIGTYPE

Invalid Trigger type.

Trigger type must be normal, scratchpad, test result, pass, blind or set out.

[E] SFE__INVPASSLTH

Invalid data length on PASS transaction.

The data portion of a pass type trigger must not be greater than

630 bytes in size.

[E] SFE__INVOPTION

Invalid option.

The options parameter was not set to 0 (zero) or the check digit

pointer was set to NULL.

[E] SFE__ERRIPCSEND

Error sending a message via an IPC object

Indicates a bad return code from the internal call to the function sfeia_send.

The status vector will contain the error(s) from the function call.

7.10 sfeua_error_write

sfeua_error_write

Unload a status vector to a caller specified output routine.

Facility

SFELA - Strategic Front End Library (Shared) routines

Syntax

void *sfeua_error_write (

SFEstatusvector *status_vector_ptr,

SFEstatus
 (*error_callback)(char *, void *),

void

 *userarg)

Description

This routine will unload each of the status values on the input status vector, format them, and invoke the caller's specified routine to process the formatted status value.

A message text corresponding to each entry in the status vector will be forwarded to the user defined ‘error_callback’ routine. If the user were to print the messages to stdout, output similar to the following may appear:

15-Oct-1993 11:00:00

 - 301 : Error connecting to <netport1>

 - 120 : Error calling system service <connect>

 - 100 : System error:

 - 67 : Address already in use

Parameters

status_vector

Usage:

SFEstatusvector

Access:
read only

Mechanism:
by reference

The status vector to be unloaded.

error_callback

Usage:

function

Access:
read only

Mechanism:
by reference

The callback routine invoked upon unloading and formatting each status value contained on the status vector.

The error callback routine takes two parameters:

string

Usage:

character string (null-terminated)

Access:
read only

Mechanism:
by reference

The formatted string represented by a single status value contained in the status vector. If this string represents the first status value on the status vector then a time stamp will be added prior to the status value text. Subsequent

strings will have a preceding set of blanks to line up the text with the first string.

userarg (see next argument below)

userarg

Usage:

user-specified

Access:
read only

Mechanism:
by value

The user-specified argument that is passed to the error_callback routine.

Return Values

None

7.11 sfeua_vector_expand

sfeua_vector_expand

To expand the error status vector into plain text for display.

Facility

SFEUA - Strategic Front End Utility routines

Syntax

char* sfeua_vector_expand(SFEstatusvector *status_vector_ptr)

Description

This routine will expand the status vector into a more readable format,

using the standard vector expansion routines, but into a NULL

terminated text string instead.

Each error string will be separated by Newline characters.

It is up to the caller to free the space allocated (returned),

e.g.

sfela_error(status_vector_ptr, 1L, 666);

sfela_error(status_vector_ptr, 4L, 999, 2L, "there","here");

emsg_p = sfeua_vector_expand(status_vector_ptr);

AfxMessageBox(emsg_p);

// do something with emsg

free(emsg_p);

// now free the msg ptr

could result in something like

15-Oct-1993 11:00:00

- 301 : Error connecting to <netport1>

- 120 : Error calling system service <connect>

- 100 : System error:

- 67 : Address already in use

Parameters

status_vector_ptr

Usage:

SFEstatusvector

Access:

read only

Mechanism:
by reference

The status vector to be unloaded.

Return Values

Usage: char *

Access: read only

Mechanism: by reference

This char * value is returned to the caller upon routine completion and must be freed by the caller.

7.12 sfela_copyright

sfela_copyright

To supply the API copyright statement for display.

Facility

SFELA - Strategic Front End Library routines

Syntax

char* sfela_copyright(void)

Description

This routine will return the API copyright statement (a null terminated string pointer).

8. Application Porting Considerations

8.1 Introduction

symbol 183 \f "Symbol" \s 10 \h
- client/server application development is rapidly being introduced to the marketplace

symbol 183 \f "Symbol" \s 10 \h
- client/server environment dictates heterogeneous platform support

symbol 183 \f "Symbol" \s 10 \h
- application porting is possible although difficult this document will simplify application porting by highlighting hot-spots

8.1.1 Audience

symbol 183 \f "Symbol" \s 10 \h
- UNIX knowledge, VAX, DOS/Windows knowledge

symbol 183 \f "Symbol" \s 10 \h
- C language constructs

8.1.2 Feedback, Questions, and Comments

symbol 183 \f "Symbol" \s 10 \h
- SFE Helpdesk , EDS Canada (905) 644 4278 etc

8.2 General Issues

symbol 183 \f "Symbol" \s 10 \h
- Will cover integer representation, alignment, network messaging, file name issues, ANSI vs. Non-ANSI, system call usage, and include file considerations

8.2.1 Integer Representation

symbol 183 \f "Symbol" \s 10 \h
- little endian vs. big endian

symbol 183 \f "Symbol" \s 10 \h
- view integers as integers - not chars etc...

symbol 183 \f "Symbol" \s 10 \h
- 16 bits vs. 32 bits

8.2.2 Alignment

symbol 183 \f "Symbol" \s 10 \h
- align structure elements on longword boundaries

symbol 183 \f "Symbol" \s 10 \h
- fill structure properly to longword boundaries

8.2.3 Network Messages

symbol 183 \f "Symbol" \s 10 \h
- do not assume alignment

symbol 183 \f "Symbol" \s 10 \h
- Use character strings if possible

symbol 183 \f "Symbol" \s 10 \h
- If integers, convert integers, do not use float

symbol 183 \f "Symbol" \s 10 \h
- include size of message within message for validation

symbol 183 \f "Symbol" \s 10 \h
- include version of application within message

symbol 183 \f "Symbol" \s 10 \h
- include check-sum/end-of-message validation

8.2.4 File Name Issues

symbol 183 \f "Symbol" \s 10 \h
- limited to 8.3 chars

symbol 183 \f "Symbol" \s 10 \h
- SCO - 14 chars

symbol 183 \f "Symbol" \s 10 \h
- DOS - 8.3 chars

symbol 183 \f "Symbol" \s 10 \h
- try to use environment variables instead of files names

symbol 183 \f "Symbol" \s 10 \h
- directory components should be insulated

symbol 183 \f "Symbol" \s 10 \h
- do not make file naming assumptions

8.2.5 ANSI vs. Non-ANSI

symbol 183 \f "Symbol" \s 10 \h
- use ANSI prototypes if possible

symbol 183 \f "Symbol" \s 10 \h
- use #ifdef (s) to encapsulate changes

8.2.6 System Call Usage

symbol 183 \f "Symbol" \s 10 \h
- System V calls (shm, sem, tli) not available on VAX, DOS, UNIX flavors

symbol 183 \f "Symbol" \s 10 \h
- portions of curses, signals, time functions are not all available, similar on UNIX. The calls are not even available on VAX, DOS.

symbol 183 \f "Symbol" \s 10 \h
- BSD sockets/ONC RPC available on all platforms through third party vendors

8.2.7 Include File Considerations

symbol 183 \f "Symbol" \s 10 \h
- most include files are in the correct location with the exception of network BSD sockets, RPC calls

8.2.8 Isolate Error Handling

symbol 183 \f "Symbol" \s 10 \h
- Some OSes (VAX) system calls have standard methods of handling errors.

symbol 183 \f "Symbol" \s 10 \h
- RDBMS products have differing methods also

8.3 Data Base Issues

8.3.1 SQL Issues

symbol 183 \f "Symbol" \s 10 \h
- RDBMS products have differing methods also

8.3.2 Data Definition Language Issues

8.4 Source Code Management

symbol 183 \f "Symbol" \s 10 \h
- There are at least three phases/environment for application porting/development:

symbol 183 \f "Symbol" \s 10 \h
- unit test

symbol 183 \f "Symbol" \s 10 \h
- this is where development starts

symbol 183 \f "Symbol" \s 10 \h
- user defined development environment

symbol 183 \f "Symbol" \s 10 \h
- subsystems not guaranteed to work with each other

symbol 183 \f "Symbol" \s 10 \h
- user develops scaffolding to mimic system components

symbol 183 \f "Symbol" \s 10 \h
- test plan focuses on component/subsystem level validation.

symbol 183 \f "Symbol" \s 10 \h
- system test

symbol 183 \f "Symbol" \s 10 \h
- subsystem interaction testing occurs here (sometimes called integration or model office test environment)

symbol 183 \f "Symbol" \s 10 \h
- application administrator system defined environment.

symbol 183 \f "Symbol" \s 10 \h
- subcomponent inter-operability is guaranteed to work - prior to a component being promoted, it must be proven to work (based on successfully completing the test plan). If the component does not work, the component is withdrawn from the system test environment and the system test environment is restored to original state.

symbol 183 \f "Symbol" \s 10 \h
- test plan focuses on full system functionality.

symbol 183 \f "Symbol" \s 10 \h
- user acceptance

symbol 183 \f "Symbol" \s 10 \h
- the system test unit is migrated to the acceptance area when all component pass system test plan.

symbol 183 \f "Symbol" \s 10 \h
- test plan is created by the customer to model full system functionality and load.

8.4.1 One Copy Of Source

symbol 183 \f "Symbol" \s 10 \h
- NFS should be used to maintain a single copy of application source for each of the above stages (unit, system, acceptance).

symbol 183 \f "Symbol" \s 10 \h
- This will simplify the reintegration effort - there will be minimal confusion as to which copy of source was complied, linked, and running.

symbol 183 \f "Symbol" \s 10 \h
- Two copies of source will eventually cause GREAT PROBLEMS when the time comes to re-integrate changes.

8.4.2 Source Code Re-Integration and Promotion

symbol 183 \f "Symbol" \s 10 \h
- Source code re-integration is typically a large and complicated problem unless ONE SINGLE COPY OF SOURCE IS MAINTAINED.

symbol 183 \f "Symbol" \s 10 \h
- Promotion of the code - understanding what is compiled, linked, and running in the environment - is absolutely critical and MUST BE CONTROLLED.

If there is one area to pay attention to, this is it.

symbol 183 \f "Symbol" \s 10 \h
- Unit test plan includes testing the component on all porting platform targets prior to promotion to system test environment. The component should be compilable and linkable on all platforms.

symbol 183 \f "Symbol" \s 10 \h
- System test plan includes testing the system on all platform targets. It is strongly encouraged to have the system test environment a heterogeneous (multi-platform) environment - network messaging, typically something that is not done well, will have to be integrated at this time.

symbol 183 \f "Symbol" \s 10 \h
- Acceptance test plan should also be in a heterogeneous environment.

8.5 The Application Environment

symbol 183 \f "Symbol" \s 10 \h
- isolate items that are going to change:

symbol 183 \f "Symbol" \s 10 \h
- system calls

symbol 183 \f "Symbol" \s 10 \h
- communication layer

symbol 183 \f "Symbol" \s 10 \h
- database calls

 This can be done by

symbol 183 \f "Symbol" \s 10 \h
- layering application

symbol 183 \f "Symbol" \s 10 \h
- defining responsibilities

symbol 183 \f "Symbol" \s 10 \h
- defining an API for each layer

8.6 Platform Specifications

For each platform discuss:

symbol 183 \f "Symbol" \s 10 \h
- Include files

symbol 183 \f "Symbol" \s 10 \h
- alignment

symbol 183 \f "Symbol" \s 10 \h
- integer representation (big-endian vs little-endian)

8.6.1 IBM RS/6000 AIX

symbol 183 \f "Symbol" \s 10 \h
- alignment of structures on longwords

symbol 183 \f "Symbol" \s 10 \h
- compiler is fairly forgiving

symbol 183 \f "Symbol" \s 10 \h
- v3.1 does not support Streams, v3.2 does

symbol 183 \f "Symbol" \s 10 \h
- RS/6000 is a big-endian architecture

8.6.2 SCO/UNIX

symbol 183 \f "Symbol" \s 10 \h
- compiler produces more errors/warnings than others.

symbol 183 \f "Symbol" \s 10 \h
- 32 bit integers

symbol 183 \f "Symbol" \s 10 \h
- be aware of representation (see DOS)

symbol 183 \f "Symbol" \s 10 \h
- Intel is a little-endian architecture

8.6.3 Interactive/UNIX

symbol 183 \f "Symbol" \s 10 \h
- forgiving compiler

symbol 183 \f "Symbol" \s 10 \h
- Intel is a little-endian architecture

8.6.4 VAX/VMS

symbol 183 \f "Symbol" \s 10 \h
- limited support for UNIX calls (sockets/RPC software is available, but is a layered product - $$$)

symbol 183 \f "Symbol" \s 10 \h
- System V ipc support is limited - VMS system calls map partially to them.

symbol 183 \f "Symbol" \s 10 \h
- only assume standard ‘C’ functionality is similar to UNIX

symbol 183 \f "Symbol" \s 10 \h
- compiler is fairly forgiving

symbol 183 \f "Symbol" \s 10 \h
- little-endian architecture

8.6.5 HP/UX

symbol 183 \f "Symbol" \s 10 \h
- include files similar to SCO

8.6.6 Motorola UNIX

symbol 183 \f "Symbol" \s 10 \h
- non ANSI compiler

symbol 183 \f "Symbol" \s 10 \h
- big-endian architecture

8.6.7 DOS/Windows 3.1

symbol 183 \f "Symbol" \s 10 \h
- integers are 16 bits instead of 32 bits

symbol 183 \f "Symbol" \s 10 \h
- representation of integers same as VAX, but different than everything else.

symbol 183 \f "Symbol" \s 10 \h
- Intel is a little-endian architecture

8.6.8 Win32 (Windows 95, 98, NT 4, 2000) - Intel

symbol 183 \f "Symbol" \s 10 \h
- integers are 32 bits

symbol 183 \f "Symbol" \s 10 \h
- representation of integers same as VAX, but different than everything else

symbol 183 \f "Symbol" \s 10 \h
- Intel is a little-endian architecture

This port of the API’s uses WinSock version 1.1. WinSock provides binary compatibility, ie programs require no changes when their executable version is moved from one network system vendor to another.

* Special note: The SFE API’s are not threadsafe and therefore do not support mult-threaded applications.

Socket Startup & Cleanup

Every WinSock application (applications using the sfe api’s on NT) must initialize the WinSock DLL before it begins any socket related calls, and notifiy the DLL to cleanup when it is done. These operations have been embedded into 2 functions; “sfeia_wsainit” and “sfeia_wsaclean”. Before the first api call (usually sfefa_open) the “sfeia_wsa_init” must be called. After the last api call (don’t forget early exits due to errors) the “sfeia_wsaclean” function must be called. An example of these calls, is in fatmain.c. These functions only have to be called once, no matter how many connection (ie sockets) are to be used.

DLL’s - Dynamic Link Libraries

The term dynamic linking refers to the process that Windows uses to link a fuction call in one module to the actual function in the library module. Static linking occurs during program development when you link various object (.OBJ) modules, run-time libraries to create a .EXE file. Dynamic linking instead occurs at run time. The The location of the dll’s is important. Their directory location must be in one of the following:

· in the directory containing the .exe program

· the current directory

· the system directory

· the windows directory

· a direcory included in your PATH (recommended)

If a dll isn’t in one of the above you will get the following error when starting the application:

“A required .DLL file, SFEIA.DLL, was not found.”

The dll’s included with the NT port are: sfela.dll, sfeua.dll, sfeia.dll, sfefa.dll.

Import Libaries

An Import Library is a special form of an object library file. They have the extension .lib but contain no code and are used by the linker to resolve function calls to the corresponding .dll file. The .lib files are linked with your source code which, in turn, reference the .ddl files. The .dll files are required at runtime, the .lib files are not.

The following files are included in the SFE API Win32 release package:

Libraries

sfela.lib, sfela.dll

sfeua.lib, sfeua.dll

sfeia.lib, sfeia.dll

sfefa.lib, sfefa.dll

Source Code

fatmain.c

Executables

fatmain.exe

iatclient.exe

iatserver.exe

Includes

(too numerous to list)

9. FLEX Opcodes

9.1 FLEX Trigger Opcodes Supported

Every message sent between the SFE and FLEX contains a four character operation code embedded within the header. The operation code is used to tell the SFE or FLEX the type of message.

The SFE API’s currently support the following FLEX opcodes for triggering:

· TRIG - trigger current vehicle

· TNXT - trigger next vehicle

· NEXT - trigger next vehicle (without vehicle identifier)

· PASS - pass through freeform data for current vehicle

· SSPD - update scratch pad for current vehicle

· STST – test result update (hold codes) for current vehicle

· TBSO - trigger current set out vehicle (NB: If vehicle is not set out, it will be treated as a TRIG)

Each of the above FLEX opcodes are generated using the following combination of trigger type and function in the sfefa_trigger API call:

	Opcode
	Trigger Type
	Function

	TRIG
	SFE_K_TRIGTYPE_NORMAL
	SFE_K_TRIGFUNC_GETSPECIFIC

	TNXT
	SFE_K_TRIGTYPE_NORMAL
	SFE_K_TRIGFUNC_GETNEXT

	NEXT
	SFE_K_TRIGTYPE_BLIND_NEXT
	SFE_K_TRIGFUNC_GETNEXT

	PASS
	SFE_K_TRIGTYPE_PASS
	SFE_K_TRIGFUNC_GETSPECIFIC

	SSPD
	SFE_K_TRIGTYPE_SCRATCHPAD
	SFE_K_TRIGFUNC_GETSPECIFIC

	STST
	SFE_K_TRIGTYPE_TESTRES
	SFE_K_TRIGFUNC_GETSPECIFIC

	TBSO
	SFE_K_TRIGTYPE_SET_OUT
	SFE_K_TRIGFUNC_GETSPECIFIC

Scratch pad data - one to 8 scratch pad records depending on the data length: i.e.

start # of
description

position bytes

 0

 8

Scratch Pad System ID

 8

10

Scratch Pad Record Key #1

18

65

Scratch Pad Record #1

83

10

Scratch Pad Record Key #2

93

65

Scratch Pad Record #2

......

· STST - update test result for current vehicle

Test Result data - one to 20 test result records: i.e.

start

of

description

position
bytes

 0

2

Number of Test Results (01-20)

 2

4

Test Hold Code #1

 6

1

Test Result #1 (P or F)

 7

4

Test Hold Code #2

11

1

Test Result #2 (P or F)

......

9.1 Returned FLEX Opcodes

The SFE will pass on the opcode returned from FLEX as part of the data structure in the sfefa_rcv function call.

In the case of an SFE client which uses normal triggering, the only opcode returned is TACK, indicating successful report generation. Should the report fail to be created (e.g. invalid PVI means the vehicle cannot be found, etc.) there will be no returned opcode as there is no report to deliver to the output address of the client. The advantage to a normal trigger is that it is guaranteed to be delivered to FLEX by the SFE.

In the case of an SFE client using accelerated triggering, there will always be an opcode returned as part of a report to the client. In the case of an opcode other than TACK, the report will have zero data length indicating no data; i.e. FLEX failed to create a full report. However, accelerated triggers are not guranteed to be delivered to FLEX by the SFE. The client will have to decide if and when to resend triggers at the risk of receiving duplicate reports. Below are all of the possible opcodes that can be returned by FLEX followed by a brief description:

	Opcode
	Description

	
	

	RSTO
	Stop requesting reports for this device

	RSTP
	Stop requesting reports for all devices

	TACK
	Successful receipt of trigger

	TADD
	Input address not found

	TCHK
	Invalid check digit

	TCHN
	SVI for the vehicle in the trigger is not chained

	TDUP
	Vehicle already triggered at this address

	TEND
	Have reached the last SVI in SVI chain for read next SVI trigger

	TMAN
	The SVI chain is undergoing maintenance and is inaccessible

	TNAV
	Data base(s) not available

	TNOB
	Vehicle is not acceptable for build

	TBSO
	Trigger data to set-out vehicle

	TNPV
	Next PVI not found (response to TNXT transaction)

	TNVL
	Invalid opcode on input address

	TOUT
	Vehicle is set out

	TPCA
	Vehicle has status of pending cancel

	TPVI
	PVI not found

	TSTO
	Stop transmission from this input address

	TSTP
	Stop all trigger transmission

	TSTT
	Restart trigger transmission

	TSVI
	SVI not found (read trigger)

10. Client TCP/IP Keep Alive

10.1 Introduction

Previously, an SFE TCP/IP client could not properly manage TCP/IP connections when a SFE server socket connection failed catastrophically. (no opportunity to close the sockets, system crash with HACMP takeover, etc.) Consequently, the socket connection would remain open; i.e. in an ESTABLISHED state. For example, using the command "netstat -a | grep sfehost" on an aix client box we see:

tcp 0 0 sfehost.sfe1fip0 client1.3668 ESTABLISHED

tcp 0 0 client1.3668 sfehost.sfe1fip0 ESTABLISHED

Now, (with the client TCP/IP Keepalive options set) whenever a client is not notified of the socket closing, the socket connection will terminate after approximately 2 minutes.

The behaviour of TCP/IP sockets can be controlled with the use of "socket options" which work in conjunction with "network options" on the host machine. The use of the Client TCP/IP Keepalive can be enabled/disabled on the client cpu with an environment variable:

SFEkeepalive=enabled

 Note: Anything other than "enabled" will disable the option.

Also, it is necessary to change one or two of the default network options (keepidle and keepinterval - these vary from platform to platform). See platform sections below for more detail.

10.1.1 AIX 3.2.5.1 up to 4.3.3

To temporarily enable client TCP/IP keepalive (available until a reboot) perform the following as root user from the command line:
“no -o tcp_keepintvl=15”

“no -o tcp_keepidle=120”

“no -o tcp_keepinit=10”

As sfe user:

“export SFEkeepalive=enabled”

The client can then be run within this environment with keepalive enabled.

To permanently enable client TCP/IP Keepalive (available after a reboot) add the following to the /etc/rc.net file

if [-f /usr/sbin/no] ; then

/usr/sbin/no -o tcp_keepintvl=15

/usr/sbin/no -o tcp_keepidle=120

/usr/sbin/no -o tcp_keepinit=10

fi

Additionally, the “export SFEkeepalive=enabled” environment variable should be placed in a file so that when the client is started, SFEkeepalive will be set automatically.

AIX Notes:

These lines perform the following functions (all are in “dog-ticks” = 1/2 second):

tcp_keepintvl=15

These control how a socket connection is cleaned

tcp_keepidle=120

up after one end dies catastrophically.

This is used in conjunction with the “keepalive” option of the TCP protocol for socket connections. If a host dies catastrophically (no opportunity to close the sockets, etc.) then these timer values will cause the socket connection to terminate after approximately tcp_keepidle + 8 * tcp_keepintvl dog-ticks; i.e. 2 minutes.

tcp_keepinit=10

This is the timeout value before an attempt to

connect that goes unserviced by the destined

server process is terminated.

This parameter means that attempts to connect to an SFE server that is running, but is too busy to respond to the connection request, will be reset after 10 dog-ticks (5 seconds).

10.1.2 HP-UX-9.04

You will need the following:

PHNE_7317.txt

- contains a description of the patch

- at the end of this file are the instructions that will need to be followed in order to install

 the patch successfully

PHNE_7317.patch

- the patch

KEEPALIVE.text

- contains instructions on how to change the keepalive option

KEEPALIVE.updt

- the keepalive script

1 Install PHNE_7317 following the instructions in PHNE_7317.txt.

2 Install KEEPALIVE following the instructions in KEEPALIVE.text.

3 To temporarily set keepalive options type in as root user:

 “./keepalive -s 120 -i 16 “

 “export SFEkeepalive=enabled”

4 In /etc/netlinkrc script, after all the ifconfig commands for LAN interfaces, insert the following command so that the options for keepalive do not need to be reset each time the box is rebooted:

 “ ./keepalive -s 120 -i 16”

5 The environment variable export SFEkeepalive=enabled should be placed in a script file so that when the client is restarted, SFEkeepalive is set automatically.

10.1.3 Motorolla - 68k/88k

1 As root user type in at the prompt:

sysgen

2 You should see the following:

 SYSGEN V1.5

 Small 147 (4MB)

vme147.sml

 -> Standard Configuration

standard

3 Type in the letter "o" which should bring up the following:

 SYSGEN V1.5

 Standard Configuration

standard

 -> Bootable tape RAM

tapemisc

* Console message disable

consdisable

* Distributed Unix File System (DU)

du

* ECC Memory Board

vmecpmem

* File System Handlers (S5)

filsys

* Generic CPU Support

vmecpu

* International Support Package

isp

* Kernel Debugger

kdb

 Kernel Profiler

kprof

* Kernel and Paging Parameters

kernel

 MVME050 System Controller Board

vme050

* MVME131 CPU Board

vme131

* MVME134 CPU Board

vme134

* MVME136 CPU Board

vme136

* MVME141 CPU Board

vme141

* MVME143 CPU Board

vme143

* MVME147 CPU Board

vme147

* MVME147 LANCE Driver

vme147lnc

* MVME147 SCSI Bus I/O Peripherals

vme147devs

Line can be selected/de-selected.

<<<MORE>>>

4 Scroll down by using the key "j" until you get to NSE Tunable Parameters. Then press the letter "o" to open this selection. The screen should look like the following:

 SYSGEN V1.5

 Standard Configuration

standard

* NSE Tunable Parameters

nsetune

* -> ARP - Table age flag 0/1 = off/on

ARPAGE

Parameter

 MVME335 Quad Serial Comm and Parallel Printer Port

Parameter

* ARP - Table replace flag 0/1 = off/on

ARPREPLACE
Parameter

* ARP - Generate ARP storm fix packet

ARPSTRM

Parameter

* IP - Allow broadcast by users on = 1

IPBCASTUSR

Parameter

* IP - Act as router on = 1

IPROUTE

Parameter

* IP - Time to live

IPTTL

Parameter

* TCP - Keep a live Maximum

KEEPAMAX

Parameter

* TCP - Keep a live time

KEEPATIME

Parameter

* TCP - Retransmission abort for keepaliv

MAXRTX

Parameter

* TCP - Maximum Window factor * MTU = WIN
MAXWINDOW
Parameter

* TCP - Maximum connection indications

MAX_CONIND
Parameter

* TCP - maximum holdoff for inline acks

MAX_HAC

Parameter

* NSE Tunable Parameters Include file

NSEINCL

Include

* TCP - output style 0 = new !0 = old

OSTYLE

Parameter

* TCP - Maximum number of ZWP's

PROBEE

Parameter

* TCP - memory factor based on streams

PSEUDOPOOL

Parameter

* -> TCP - Retransmission delay

RTXDLY

Parameter

Field width is 39 text characters.

pty

5 The parameters that need to be changed are:

 TCP - Keep a live Maximum

KEEPAMAX

 TCP - Keep a live time

KEEPATIME

 TCP - Retransmission abort for keepaliv

MAXRTX

6 Press the "j" key to get to TCP - Keep a live Maximum and then type in "o". The default is 5. The value should be changed to 3. Type in "j" to get to Value which is the last line. Type in c to change it. When the change is made, press enter.

7 Type in "q" to get to the previous screen. Press "j" to get to the next parameter which should be TCP - Keep a live time and then type in "o". The default is 180. The value should be changed to 80.

7.5 Set MAXRTX to 3.

8 Reboot the Motorolla box.

9 export SFEkeepalive=enabled

The environment variable “export SFEkeepalive=enabled” should be placed in a script file so that when the client is started, SFEkeepalive should be set.

10.1.4 Windows 32 bit (NT/95/98)

Windows (all 32 bit versions) defaults to fixed values for the keepidle and keepinterval settings when initially installed. Further, it does not explicitly define these settings in its registry, but rather, sets the default values unless the entries to override them exist in the Windows registry. These defaults result in extremely long timeouts (> 2 hours) that render the TCP/IP keepalive useless for production critical clients of the SFE. Consequently, it is recommended only the following entry be added to the Windows registry in order to override and shorten the timeout to approximately 1 minute:

Windows NT subkey

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\KeepAliveTime

Windows 95/98 subkey

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\VxD\MSTCP\KeepAliveTime

This registry entry corresponds to the keepidle parameter described above and should be set to a value of 0x7530 (hex 7530) or the decimal equivalent of 30000 (30000 x 1 millisecond = 30 seconds).

The user environment requires the environment variable to enable the keepalive in the SFE API’s be defined as:

c:\> set SFEkeepalive=enabled

Alternatively on NT, this environment variable can be defined by:

1. Selecting “Properties” from the System icon on the desktop.

2. Select the “Environment” tab.

3. Add an entry for the variable name SFEkeepalive and value of enabled.

APPENDIX A – API User Guide Changes

	Section
	CSR/CR
	Description of Change
	Date

	APPENDIX A
	N/A
	New Section to the document.
	June 2001

	Table of Contents
	N/A
	Added APPENDIX A to Table of Contents.
	June 2001

	8.6.7
	N/A
	Specified in title the specific version of Windows being discussed for the section.
	June 2001

	8.6.8
	N/A
	Specified in title the specific version of Windows being discussed for the section
	June 2001

	10.1
	Action Item 238
	Minor updates to the section to clarify the number of parameters changed and formatting.
	Nov. 6, 2001

	10.1.4
	Action Item 238
	Added new section to reflect required updates for Windows 32 bit (NT/95/98)
	Nov. 6, 2001

	4.2.3
	Action Item 238 (Update)
	Added detailed explanation of drive letter requirements for runtime error message file in Windows.
	Dec. 17, 2001

Page 5 of 93

_1046676552.vsd

